Extensions 1→N→G→Q→1 with N=C2 and Q=C22xC32:C4

Direct product G=NxQ with N=C2 and Q=C22xC32:C4
dρLabelID
C23xC32:C448C2^3xC3^2:C4288,1039


Non-split extensions G=N.Q with N=C2 and Q=C22xC32:C4
extensionφ:Q→Aut NdρLabelID
C2.1(C22xC32:C4) = C2xC3:S3:3C8central extension (φ=1)48C2.1(C2^2xC3^2:C4)288,929
C2.2(C22xC32:C4) = C2xC4xC32:C4central extension (φ=1)48C2.2(C2^2xC3^2:C4)288,932
C2.3(C22xC32:C4) = C22xC32:2C8central extension (φ=1)96C2.3(C2^2xC3^2:C4)288,939
C2.4(C22xC32:C4) = C2xC32:M4(2)central stem extension (φ=1)48C2.4(C2^2xC3^2:C4)288,930
C2.5(C22xC32:C4) = C3:S3:M4(2)central stem extension (φ=1)244C2.5(C2^2xC3^2:C4)288,931
C2.6(C22xC32:C4) = C2xC4:(C32:C4)central stem extension (φ=1)48C2.6(C2^2xC3^2:C4)288,933
C2.7(C22xC32:C4) = (C6xC12):5C4central stem extension (φ=1)244C2.7(C2^2xC3^2:C4)288,934
C2.8(C22xC32:C4) = C62.(C2xC4)central stem extension (φ=1)488-C2.8(C2^2xC3^2:C4)288,935
C2.9(C22xC32:C4) = D4xC32:C4central stem extension (φ=1)248+C2.9(C2^2xC3^2:C4)288,936
C2.10(C22xC32:C4) = C12:S3.C4central stem extension (φ=1)488+C2.10(C2^2xC3^2:C4)288,937
C2.11(C22xC32:C4) = Q8xC32:C4central stem extension (φ=1)488-C2.11(C2^2xC3^2:C4)288,938
C2.12(C22xC32:C4) = C2xC62.C4central stem extension (φ=1)48C2.12(C2^2xC3^2:C4)288,940
C2.13(C22xC32:C4) = C2xC62:C4central stem extension (φ=1)24C2.13(C2^2xC3^2:C4)288,941

׿
x
:
Z
F
o
wr
Q
<