Extensions 1→N→G→Q→1 with N=C2 and Q=C22×C32⋊C4

Direct product G=N×Q with N=C2 and Q=C22×C32⋊C4
dρLabelID
C23×C32⋊C448C2^3xC3^2:C4288,1039


Non-split extensions G=N.Q with N=C2 and Q=C22×C32⋊C4
extensionφ:Q→Aut NdρLabelID
C2.1(C22×C32⋊C4) = C2×C3⋊S33C8central extension (φ=1)48C2.1(C2^2xC3^2:C4)288,929
C2.2(C22×C32⋊C4) = C2×C4×C32⋊C4central extension (φ=1)48C2.2(C2^2xC3^2:C4)288,932
C2.3(C22×C32⋊C4) = C22×C322C8central extension (φ=1)96C2.3(C2^2xC3^2:C4)288,939
C2.4(C22×C32⋊C4) = C2×C32⋊M4(2)central stem extension (φ=1)48C2.4(C2^2xC3^2:C4)288,930
C2.5(C22×C32⋊C4) = C3⋊S3⋊M4(2)central stem extension (φ=1)244C2.5(C2^2xC3^2:C4)288,931
C2.6(C22×C32⋊C4) = C2×C4⋊(C32⋊C4)central stem extension (φ=1)48C2.6(C2^2xC3^2:C4)288,933
C2.7(C22×C32⋊C4) = (C6×C12)⋊5C4central stem extension (φ=1)244C2.7(C2^2xC3^2:C4)288,934
C2.8(C22×C32⋊C4) = C62.(C2×C4)central stem extension (φ=1)488-C2.8(C2^2xC3^2:C4)288,935
C2.9(C22×C32⋊C4) = D4×C32⋊C4central stem extension (φ=1)248+C2.9(C2^2xC3^2:C4)288,936
C2.10(C22×C32⋊C4) = C12⋊S3.C4central stem extension (φ=1)488+C2.10(C2^2xC3^2:C4)288,937
C2.11(C22×C32⋊C4) = Q8×C32⋊C4central stem extension (φ=1)488-C2.11(C2^2xC3^2:C4)288,938
C2.12(C22×C32⋊C4) = C2×C62.C4central stem extension (φ=1)48C2.12(C2^2xC3^2:C4)288,940
C2.13(C22×C32⋊C4) = C2×C62⋊C4central stem extension (φ=1)24C2.13(C2^2xC3^2:C4)288,941

׿
×
𝔽